

105

U.S. Army Research Laboratory
SUMMER RESEARCH TECHNICAL REPORT

Investigation of Integrating Three-Dimensional (3-D) Geometry into the

Visual Anatomical Injury Descriptor (Visual AID) Using WebGL

AUTUMN KULAGA
MENTOR: PATRICK GILLICH

WARFIGHTER SURVIVABILITY BRANCH, BALLISTICS & NBC DIVISION,
ABERDEEN PROVING GROUND, MARYLAND

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Investigation Of Integrating Three-Dimensional (3-D) Geometry Into The
Visual Anatomical Injury Descriptor (Visual AID) Using WebGL

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Warfighter Survivability Branch, Ballistics & NBC Division,Aberdeen
Proving Ground,MD,21005

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADA548876

14. ABSTRACT
The Visual Anatomical Injury Descriptor (Visual AID) is a graphical computer tool developed to illustrate
injury and severity on an anatomical figure, allowing for communication of trauma. Currently, the tool
uses two-dimensional images rendered from three-dimensional (3-D) geometry to convey injury. While
integrating 3-D geometry was a part of the initial development plan, this step was delayed while waiting for
technologies to mature. This paper discusses the Web-based 3-D environment prototype being developed to
understand the feasibility of integrating WebGL into Visual AID. Using WebGL will permit us to display
the current anatomical geometry used by Visual AID in a 3-D Web-based environment. Employing a 3-D
environment allows us to more accurately display the geometry, thus providing a better navigation system
and the potential to add annotations fixed to 3-D points. Further developments must be made to better
understand integration of highly detailed geometry as well as changing geometry attributes at runtime,
such as Abbreviated Injury Scale (AIS) code, severity, and color association. WebGL is a novel
cross-platform technology that must be further explored as standardization occurs, thus enabling future
advancements. The features that have already been explored will enhance Visual AID?s injury illustrating
capabilities, facilitating the communication of injury data.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

106

Contents

List of Figures 107

List of Tables 107

Abstract 108

Acknowledgments 109

Student Bio 110

1. Introduction/Background 111

2. Support for Implementing 3-D 112

2.1 Why 3-D? ..112

2.2 Why WebGL?..114

2.3 Costs of Implementation ...114

3. WebGL Prototype and Discussion 115

4. Summary and Conclusions 117

5. References 118

107

List of Figures

Figure 1. Visual AID user interface. ...112

Figure 2. Inappropriate overlap caused by use of 2-D images. ...113

Figure 3. Visual AID interface (left) next to test of Zygote geometry in WebGL
environment. ..116

List of Tables

Table 1. AIS severity levels. ...111

108

Abstract

The Visual Anatomical Injury Descriptor (Visual AID) is a graphical computer tool developed to
illustrate injury and severity on an anatomical figure, allowing for communication of trauma.
Currently, the tool uses two-dimensional images rendered from three-dimensional (3-D)
geometry to convey injury. While integrating 3-D geometry was a part of the initial development
plan, this step was delayed while waiting for technologies to mature. This paper discusses the
Web-based 3-D environment prototype being developed to understand the feasibility of
integrating WebGL into Visual AID. Using WebGL will permit us to display the current
anatomical geometry used by Visual AID in a 3-D Web-based environment. Employing a 3-D
environment allows us to more accurately display the geometry, thus providing a better
navigation system and the potential to add annotations fixed to 3-D points. Further developments
must be made to better understand integration of highly detailed geometry as well as changing
geometry attributes at runtime, such as Abbreviated Injury Scale (AIS) code, severity, and color
association. WebGL is a novel cross-platform technology that must be further explored as
standardization occurs, thus enabling future advancements. The features that have already been
explored will enhance Visual AID’s injury illustrating capabilities, facilitating the
communication of injury data.

109

Acknowledgments

Thanks to Ronald Weaver, Timothy Myers, and Zachary Hamman for their technical insight and
programming expertise on this project, and also to Patrick Gillich for excellent mentorship.

110

Student Bio

I am a graduate student with a bachelor of fine arts in Communication Arts from Virginia
Commonwealth University in Richmond, VA. This undergraduate degree has provided me with
the ability to visually communicate information, allowing for a more concise and precise
understanding of the information at hand. In order to fulfill the medical illustration track, I
completed a concentration in science, focusing on human anatomy. In the fall of 2011, I will be
attending the University of Illinois Chicago to obtain a master of science in Biomedical
Visualization. This program is one of only five accredited by the Association of Medical
Illustrators. For the past five summers, I have been a student employee with the
Survivability/Lethality Analysis Directorate in the Warfighter Survivability Branch helping to
improve visualization of anatomical geometry.

111

1. Introduction/Background

Visual Anatomical Injury Descriptor (Visual AID) is a graphical tool developed to illustrate
injury and severity on an anatomical representation. Illustrations produced by Visual AID
visually communicate trauma. Injuries are based on information from casualty medical records
or generated from modeling and simulation. Visual AID illustrations allow for communication of
injuries to audiences outside the medical community. The first generation of Visual AID uses
two-dimensional (2-D) images of prerendered three-dimensional (3-D) geometry (1). The
development plan of Visual AID included future integration of 3-D rendering within the
application. However, a 3-D implementation was delayed while waiting for 3-D Web
technology to mature.

Visual AID enables efficient communication of injury data. Injury data is input by manual
selection of tissues or using Abbreviated Injury Scale (AIS) (2) codes.

AIS is an anatomical scoring system that ranks the severity of injury, providing a consistent
technique for describing trauma. AIS is a seven-digit code for unique injury coding. The first six
digits detail the location, nature, and type of injury. The seventh, or post dot, digit encodes the
severity level. Injury severity is classified according to a six-point ordinal scale with the addition
of a seventh value denoting an unknown injury level (table 1). Within the U.S. Army Research
Laboratory (ARL), this scale is associated with color values. The associated colors allow Visual
AID to display the severity of injured tissues.

Table 1. AIS severity levels.

Injury images are generated using the Zygote Human Anatomy 3-D model (3). Use of a
reference anatomy independent of personal identification, such as Zygote, allows Visual AID to
anonymously display actual patient trauma. The Zygote geometry was broken into components
in Autodesk Maya 2009, a 3-D modeling program. Each component was modeled to describe a
specific location of injury. Individual tissue components were rendered into 2-D images
exported from Maya. Each tissue was rendered in all of the seven colors associated with AIS to

112

allow for display of severity. All of the tissue images are stored in a directory organized by
location on the body and tissue type. A black and white background image was made by
rendering geometry from Maya and editing in Adobe Photoshop CS3. When a list of injury
codes is input into Visual AID, a stack of prerendered images are displayed on the screen over
the prerendered background image (figure 1).

Figure 1. Visual AID user interface.

Recent maturation of 3-D Web technology makes the planned transition from prerendered 2-D
images to rendering 3-D geometry within Visual AID a possibility. Web-based Graphics Library
(WebGL) is an application programming interface (API) that allows for viewing of 3-D
geometry within a Web browser without the need of any plug-ins. WebGL Specification Version
1.0 was released in February 2011 (4). This report documents the current effort to understand
the advantages, capabilities, and possible costs of integrating 3-D models into Visual AID using
WebGL.

2. Support for Implementing 3-D

2.1 Why 3-D?

The development of Visual AID has allowed for easy production of detailed injury illustrations.
Implementation of 3-D geometry allows for more accurate injury illustrations, a better navigation
system, and the ability to fix placement of annotations.

113

When 3-D geometry is prerendered from Maya to 2-D images, the geometry is flattened. When
tissues located within close proximity of each other are both displayed, they can produce
inappropriate overlap. Visual AID places one image on top of the other based on a
predetermined layering order. The current layering order is determined by the distance of the
geometry from camera Maya uses to render the image. In figure 2, three images—the lung, the
heart, and the coronary arteries, respectively—overlay the background image. The lungs and
coronary arteries surround the heart. Portions of the lungs should be hidden behind the heart
while other portions of the lungs should overlap the heart. Also, the coronary arteries wrap
around the heart. No unambiguous layering is available to portray anatomically correct
visualizations. Analysts with less knowledge of anatomy examining the data may confuse and
misconstrue the illustrations. In figure 2, arteries displayed could be misinterpreted as existing in
front of the heart, or that the lung tissue affected is only behind the heart.

Figure 2. Inappropriate overlap caused
by use of 2-D images.

Use of 3-D geometry resolves current issues of overlapping geometry depicted with 2-D images.
The Zygote geometry used is defined in 3-D space. If the 3-D geometries representing lungs,
heart, and coronary arteries are combined directly in Visual AID, the composite image will
display proper interleaving of the tissues. The desire to replace images with 3-D geometry allows
Visual AID to provide users with a better understanding of the affected anatomy.

Another advantage to using 3-D rendering is the ability to add a more flexible navigation system.
Initial implementation only allowed visualization of injury from the front. The current navigation
of Visual AID allows for a view of the anatomy from every 15° along the x-axis. Images are
prerendered for each tissue from each supported view angle.

Navigation in 3-D allows for observation from any angle. In addition to rotation along the x-axis,
rotation along the y-axis and a zoom option will be added. Adjustment of camera angle can be
input to capture any perspective of the injury being illustrated. Once the screen is loaded, the
application interchanges injury illustrations to display different angles with little lag.

114

Furthermore, use of 3-D provides the potential to add annotations that fixed to a specific 3-D
point. The current version of Visual AID allows the user to draw a dot in the illustration. The dot
is connected to an annotation. If the user decides to view the injury illustration from a different
angle, the dot stays in the previous location. The inability to move this annotation along with the
geometry is a limitation of Visual AID. This limitation could be fixed in the 2-D version.
However, fixing this issue within 2-D implementation would require a rudimentary 3-D context
to be developed.

Two functions of the annotation tool are to add notes to specific locations on the illustration and
visualizing shot lines. Notes allow for specific comments related to injured tissues. Shot lines are
representations of a path taken by a threat, i.e., bullet or fragment. Shot lines are described with
the annotation tool by labeling entrance and exit wounds. With the potential to add drawing
capabilities in a 3-D context, more mobile annotations can be created.

2.2 Why WebGL?

Previously established methods of Web-based 3-D model visualization use plug-ins associated
with specific browsers and platforms to add a 3-D context to HTML4. HTML5 adds a canvas
tag, which allows for JavaScript embedded in HTML pages to dynamically draw graphics.
WebGL, through JavaScript, provides a means to render 3-D geometry in the HTML5 canvas
tag. Web browsers with HTML5 and WebGL allow the rendering of 3-D geometry without the
use of any plug-ins. The Khronos Group, a nonprofit industry consortium, developed WebGL.
WebGL’s cross-platform API is derived from Open Graphics Language on Embedded Systems
(OpenGL ES) 2.0. OpenGL is a widely adopted 2-D and 3-D graphics API used to communicate
with the graphics processing unit (GPU). The use of an already established cross-platform
graphics library allows Visual AID to be more adaptable to future developments.

2.3 Costs of Implementation

As a new development, WebGL is a maturing technology that has yet to be fully developed and
supported. WebGL’s lack of full development creates a need for a specific browser, a need to
import partitioned geometry, and a lack of documentation.

To use WebGL, a new version of a Web browser is necessary. The Khronos WebGL working
group has developed specifications for WebGL version 1.0; however, not all Web browsers
support this specification. Mozilla Firefox 4.0 and Google Chrome 10 are the current browsers
that support WebGL implementation. Internet Explorer has no plans to develop WebGL
capabilities, but a third-party plug-in exists. Also, it is problematic to import very detailed
geometry. Detailed geometry equates to more points, vertices, in 3-D space. Vertex indices are
used in WebGL to define the points associated with respective polygons. The WebGL working
group has placed limitations on the amount of vertex indices associated with one piece of
geometry in an effort to create a cross-platform capacity, specifically to support embodied
systems such as smart phones. This polygon limitation affects Visual AID by limiting the detail

115

of tissue geometry or forcing the segmentation of tissue geometry into portions and referencing
multiple portions to display a single tissue. The final issue to be discussed is the lack of WebGL
documentation needed to allow for efficient learning and implementation. While OpenGL ES 2.0
is the basis for WebGL, and references are available for OpenGL ES, no WebGL-specific books
are available. WebGL’s current capabilities are tested by referencing online tutorials, wiki pages,
and the WebGL Work Group’s Specification page (5, 6).

As WebGL further matures, the aforementioned developmental deficiencies should be resolved.
The WebGL specification is being adopted across browsers on existing and emerging platforms.
Also, thorough documentation will follow the expanded support of this novel technology.

3. WebGL Prototype and Discussion

To understand the feasibility of integrating WebGL, insight to the WebGL process has been
acquired and implementation tests have been performed. In order to provide benefits of 3-D in a
Web browser, the abilities that have been explored include understanding the methods of input,
assignment of different color shaders to tissues, means to dynamic scene lighting, and control
over navigation. To better understand the prospect of integrating WebGL into Visual AID,
methods of loading and displaying multiple highly detailed geometries as well as representing
separate AIS severities on different tissues must be further explored.

To efficiently run the next version of Visual AID, equipped with WebGL, researchers provided a
better understanding of the process WebGL uses to display graphics. JavaScript variables hold
buffer and shader information. Buffers hold the data that describe geometry, such as vertex
points, vertex indices, and color. A vertex shader and a fragment shader hold different types of
shader information, which later define the buffers. Shader programs are built to link variables
and shader instructions. These shader instructions are later sent to the GPU along with
instructions on how to draw the scene. Knowledge of this process facilitates better development
and enhancement of Visual AID.

By following tutorials provided online (5), the ability to load geometry and create a dynamic 3-D
environment has been prototyped. The development of this project has incorporated heart
geometry from Visual AID (figure 3). After understanding the information WebGL needs
defined in buffers, such as vertex points, vertex indices, and normal vectors, the information was
exported from Maya into text files. The data from the text files were loaded into buffer variables.
Once the data-defining geometry is loaded into buffer variables, color can also be defined. Once
the GPU has a color defined, the vertex shader facilitates applying the color to the vertex. The
fragment shader draws the pixel on the screen and fills in the space between vertices with the
correlating color. Once normals are loaded and applied to the vertices, lighting can be integrated
into the scene. The normal vectors allow the vertex shader to calculate the direction light reflects
off of the geometry, allowing for the appearance of depth of the 3-D shape.

116

Figure 3. Visual AID interface (left) next to test of Zygote geometry in WebGL environment.

After the tissue geometry was integrated into the scene with color and dynamic lighting, the
navigation system was enhanced. A 3-D matrix represents the space where all of the geometry is
drawn. In order to adjust the view of the geometry, the matrix is adjusted. To allow for viewing
of the heart from multiple angles, the left and right cursor keys adjust the x-axis, the up and
down cursor keys adjust the y-axis, and the page-up and page-down keys adjust the zoom view.
The geometry data is preloaded into the scene and the view is manipulated, constantly adjusting
the position of this data and redrawing the screen.

Development explorations involve fully understanding how to load detailed geometry and how to
associate geometry with AIS code to turn on associated color, and methods of adding draw
capabilities to add annotations. Currently, it is unknown if latency is an issue when loading all of
Visual AID’s detailed anatomical geometry. How the application will handle large amounts of
data is currently being examined. Geometry with large amounts of indices will have to be
reduced or broken into portions and displayed in unison.

Another feature to be evaluated is associating geometry, with correct AIS codes and displaying
geometry on the screen. AIS codes can easily be mapped to array variables defining tissue data.
Localizers are a numeric code in AIS that further specifies location of an injury. Given the
common use of localizers when analysts code AIS, we need to determine if association of only
portions of tissue data can be mapped to AIS codes without duplicating entire data files. The
benefits or costs of not duplicating this data must be further understood.

Finally, the best method to load geometry and control visibility at run time needs to be better
understood. There is the potential to have differences in application performance with preloaded
geometry vs. geometry loaded while running the application. The GPU runs the shader programs
once when the page is initially loaded; this is the point when the geometry is loaded onto the
scene. The current options to explore include loading the geometry at once and adjusting
visibility, or reloading the scene to adjust displayed tissue data and AIS severity. The most
efficient way to perform such operations will fully be understood once large amounts of data can
be properly loaded into the scene.

117

Current external efforts on the Web, such as Google Labs (7), support the prospect of integrating
WebGL into Visual AID. In this prototype, benefits of 3-D have been realized by understanding
the methods of input, assigning different color shaders to tissues, and adding dynamic scene
lighting and navigation. To provide an injury illustration tool with better capabilities and control
over the environment, methods of loading and displaying multiple highly detailed geometries, as
well as representing separate AIS severities on different tissues, must be better understood and
implemented.

4. Summary and Conclusions

As a computer graphics tool, Visual AID allows for effective communication of injury through
descriptive illustrations. The current method to display injury or trauma data is by displaying 2-D
images of 3-D geometry. Implementation of a 3-D environment will facilitate Visual AID’s
ability to provide more accurate injury illustrations, navigate fully around the geometry, and
more accurately place annotations. These implementations will allow for more effective
representations of trauma. WebGL is a viable means to implement the 3-D environment given its
cross-platform/cross-browser abilities and lack of need for Web browser plug-ins. The full
support of WebGL by Web browsers is still under development; however, multiple sources (4–6)
are available to support integration of this technology into Visual AID.

Understanding the prospect of adding 3-D into the Web environment was done by integrating
WebGL to control the data input, assigning different color shaders, and adjusting dynamic
lighting, as well as improving navigation. As further investigation and creation of a WebGL
prototype continues, the methods of loading multiple highly detailed geometry and assignment of
AIS code with severity to tissue data will be examined. With the enhancement of Visual AID
through integration of a 3-D environment, more accurate and descriptive injury illustrations can
be made. The use of an established cross-platform graphics library, such as WebGL, will
facilitate many of Visual AID’s future advancements.

118

5. References

1. Kulaga, A. R.; Gillich, P. J. Visual Anatomical Injury Descriptor (AID);
Survivability/Lethality Analysis Directorate, U.S. Army Research Laboratory, July 16, 2010.

2. International Injury Scaling Committee. Abbreviated Injury Scale (2005 Revision);
Association for the Advancement of Automotive Medicine: Arlington Heights, IL, 2008.

3. Zygote Media Group Web site. Zygote Human Anatomy 3D Model, 2010.
http://www.zygote.com/ (accessed July 26, 2011).

4. Khronos Group Web site. Khronos to Create New Open Standard for Advanced Device and
Sensor Input, April 12, 2011. http://www.khronos.org/news/press/releases/khronos-webgl-
initiative-hardware-accelerated-3d-graphics-internet (accessed 26 July 2011).

5. Learning WebGL Web site. http://learningwebgl.com (accessed 26 July 2011).

6. Khronos Group Web site. WebGL Specification, 10 February 2011.
https://www.khronos.org/registry/webgl/specs/1.0/ (accessed 26 July 2011).

7. Google Body Web site, 2011. http://bodybrowser.googlelabs.com/ (accessed July 26, 2011).

